# The Crystal Structure of 1,6-Anhydro- $\beta$-D-mannofuranose 

By J. Lechat* and G. A. Jeffrey $\dagger$<br>Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 2 May 1972)
The crystal structure of 1,6 -anhydro- $\beta$-d-mannofuranose, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, has been determined from X-ray automatic diffractometer data with $\mathrm{Cu} K \alpha$ radiation. The crystal data are: space group $P 2_{2} 2_{1} 2_{1}, a=$ 5.877 (5), $b=11.396$ (9), $c=9.915$ (8) $\AA, Z=4, D_{m}=1.613 \mathrm{~g} . \mathrm{cm}^{-3}$. The phase problem was solved by symbolic addition and tangent refinement, and the parameters were refined to give a final $R=0 \cdot 03$. The molecular conformation is that with a chair six-membered anhydro ring and an envelope furanose ring, having the oxygen out of the plane. There are small, but apparently systematic, differences in the C-O bond lengths, which range from 1.409 to $1.466 \AA$. The hydrogen bonding is intermolecular and consists of infinite spirals and isolated links.

## Introduction

This crystal-structure determination is part of a study of the effect of anhydro ring formation on the bond lengths, valence and torsion angles of carbohydrates. Previous investigations in this series are those of 1,6 -anhydro- $\beta$-D-glucopyranose (Park, Kim \& Jeffrey, 1971) and 1,6:2,3-dianhydro- $\beta$-D-gulopyranose (Berking \& Seeman, 1971). 1,6-Anhydro- $\beta$-d-mannofuranose (I), $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, is formed by the dry pyrolysis of D-mannose (Heyns, Köll \& Paulsen, 1971) and crystals were provided by Professor H. Paulsen of the Institute of Organic Chemistry and Biochemistry, University of Hamburg.

(I)

## Experimental

The unit-cell constants, and the three-dimensional intensity data were measured on a Nonius CAD-3 automatic diffractometer using (Ni-filtered) $\mathrm{Cu} \mathrm{K} \alpha$ radiation with a crystal, $0.4 \times 0.2 \times 0.3 \mathrm{~mm}$, mounted along the $a$ axis. The $\theta-2 \theta$ scanning mode with varying interval was used up to $2 \theta=120^{\circ}$. Of the 602 recorded reflections, 589 were observed above background, [ $\left.I_{m}>2 \sigma\left(I_{m}\right)\right]$, where $\sigma$ is the estimated standard deviation of $I_{m}$ from the counting statistics. Two standards were measured every thirty reflections and used to scale the data. The data were reduced to structure factors without absorption correction. Crystal data are given in Table 1.

[^0]Table 1. Crystal data
1,6-Anhydro- $\beta$-d-mannofuranose, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$ M.W. $162 \cdot 08$, m.p. $192-3^{\circ} \mathrm{C}$.

Space group $P 2_{1} 2_{1} 2_{1}$, from systematic extinctions $h 00$ with $h=2 n+1,0 k 0$ with $k=2 n+1,00 l$ with $l=2 n+1$. $a=5.877$ (5), $b=11.396$ (9), $c=9.915$ (8) $\AA$ $D_{m}=1.613 \mathrm{~g} . \mathrm{cm}^{-3}$ (flotation), $D_{\mathrm{x}}=1.625 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4, \mu(\mathrm{Cu} K \alpha)$ $=12.5 \mathrm{~cm}^{-1}$.

## Determination and refinement of the structure

The structure was solved by application of the $\Sigma_{2}$ symbolic addition method to the 30 reflections with the higher $E$ values, using the reflections $033 ; 1,10,0$; $2,11,0$, to define the origin and 023 to define the en-


Fig. 1. Atomic numbering and ORTEP (Johnson, 1965) representation of 1,6 -anhydro- $\beta$-D-mannofuranose.
antiomorph. The tangent refinement formula was then applied to 140 reflections with $E \geq 1 \cdot 20$. The eleven highest peaks which appeared in the resulting $E$ map clearly corresponded to the eleven heavy atoms (carbon and oxygen) of the structure. The conventional $R$ value calculated from the trial structure was 0.27 for all reflections. The refinement was by several cycles of isotropic and anisotropic block-diagonal and fullmatrix least squares. The function minimized was $\omega_{1}\left(K\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $\omega_{i}=1 /\left(A+B\left|F_{o}\right|+C\left|F_{o}\right|\right)^{2}$ with $A=16, B=1, C=0.0014$ for the observed reflections and $\omega_{i}=0$ for the unobserved. The non-hydroxyl hydrogen atoms were found close to their calculated positions on a difference synthesis map calculated at $R=0.095$. The hydroxyl hydrogen atoms were located on a difference synthesis map calculated at $R=0.046$. The hydrogen atoms were given the thermal parameters of the atoms to which they are attached and their coordinates only were refined. The final refinement cycle gave $R=0.039$ for all reflections and $R=$ 0.032 for the observed reflections only. Nine reflections which appeared to be seriously affected by extinction were given zero weight as indicated in Table 2, which gives the observed and calculated structure factors. The atomic parameters are given in Table 3. Fig. I gives the atomic numbering and an $O R T E P$ plot (Johnson, 1965) of the thermal parameters. The atomic scattering factors used were those of Cromer \& Waber (1965) for carbon and oxygen and of Stewart, Davidson \& Simpson (1965) for hydrogen.

Table 2. Observed and calculated structure factors for 1,6 -anhydro- $\beta$-D-mannofuranose

Columns are: Index, $10\left|F_{\text {obss }}, 10\right| F_{\text {calc }} ;$ * indicates unobserved reflections, +indicates reflections eliminated from last refinement cycle.


 N-0, …~-0,





 …~-0, N....N-0





Table 3. Fractional atomic coordinates and anisotropic thermal parameters in 1,6-anhydro- $\beta$-D-mannofuranose The temperature factor expression used was $\exp \left\{-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right) \times 10\right\}$. Estimated standard deviations are in parentheses.

|  | $x$ | $y$ | $z$ | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | 0.4801 (6) | $0 \cdot 3842$ (3) | $0 \cdot 2495$ (3) | 140 (9) | 42( 2 ) | 71 (3) | -2 (4) | 18 (5) | -8(2) |
| C(2) | $0 \cdot 5721$ (5) | $0 \cdot 4750$ (3) | $0 \cdot 1485$ (3) | 117 (9) | 38 (2) | 76 (3) | -4 (4) | -4(5) | -3(2) |
| C(3) | 0.7352 (5) | 0.4027 (3) | 0.0589 (3) | 172 (9) | 34 (2) | 51 (3) | -2 (4) | 16 (5) | -1 (2) |
| C(4) | 0.7195 (5) | 0.2784 (2) | $0 \cdot 1182$ (3) | 156 (9) | 30 (2) | 58 (3) | -1 (4) | 9 (5) | -10 (2) |
| C(5) | 0.8795 (5) | $0 \cdot 2553$ (3) | $0 \cdot 2330$ (3) | 127 (10) | 31 (2) | 72 (3) | 4 (4) | -1 (5) | 6 (2) |
| C(6) | 0.8456 (6) | $0 \cdot 3458$ (3) | $0 \cdot 3462$ (3) | 148 (10) | 49 (3) | 65 (4) | -3 (4) | -33(5) | 2 (2) |
| $\mathrm{O}(1)$ | 0.6106 (4) | $0 \cdot 3715$ (2) | $0 \cdot 3693$ (2) | 189 (8) | 61 (2) | 55 (2) | -2 (3) | 12 (3) | -10(2) |
| $\mathrm{O}(2)$ | 0.6847 (4) | 0.5720 (2) | $0 \cdot 2062$ (2) | 175 (7) | 32 (2) | 救107 (3) | 1 (3) | 13 (4) | -16(2) |
| $\mathrm{O}(3)$ | 0.9640 (4) | 0.4427 (2) | $0 \cdot 0580$ (2) | 169 (7) | 40 (2) | 63 (2) | -10 (3) | 18 (3) | 5 (2) |
| O(4) | 0.4889 (4) | 0.2779 (2) | 0.1746 (2) | 143 (7) | 36 (2) | 73 (2) | $-11$ | 5 (3) | -7(2) |
| $\mathrm{O}(5)$ | $0 \cdot 8334$ (4) | $0 \cdot 1382$ (2) | $0 \cdot 2793$ (3) | 216 (7) | 33 (2) | 124 (3) | 4 (3) | -3(5) | 25 (2) |

Table 3 (cont.)

|  | $x$ | $y$ | $z$ |
| :--- | :---: | :---: | ---: |
| $\mathrm{H}(1)$ | $0.303(6)$ | $0.398(3)$ | $0.293(3)$ |
| $\mathrm{H}(2)$ | $0.428(6)$ | $0.497(3)$ | $0.093(3)$ |
| $\mathrm{H}(3)$ | $0.665(6)$ | $0.398(3)$ | $-0.042(3)$ |
| $\mathrm{H}(4)$ | $0.708(6)$ | $0.214(3)$ | $0.055(3)$ |
| $\mathrm{H}(5)$ | $1.027(7)$ | $0.258(3)$ | $0.200(3)$ |
| $\mathrm{H}(6 A)$ | $0.915(6)$ | $0.312(3)$ | $0.429(4)$ |
| $\mathrm{H}(6 B)$ | $0.938(6)$ | $0.419(3)$ | $0.313(4)$ |
| $\mathrm{H}(\mathrm{O} 2)$ | $0.554(7)$ | $0.620(3)$ | $0.229(4)$ |
| $\mathrm{H}(\mathrm{O} 3)$ | $0.960(7)$ | $0.500(4)$ | $0.006(4)$ |
| $\mathrm{H}(\mathrm{O} 5)$ | $0.939(7)$ | $0.097(3)$ | $0.302(5)$ |

## Results and discussion

As in 1,6 -anhydro- $\beta$ - D -glucopyranose (II), the conformation observed for 1,6 -anhydro- $\beta$-D-mannofuranose is that with a chair-shaped six-membered ring, ( $\mathrm{I} a$ ), rather than the alternative conformation with the boatshaped ring, (Ib). In 1,6:2,3-dianhydro- $\beta$-d-gulopyranose, the presence of the 2,3 ring constrains the sixmembered ring to be half-chair, as shown in (III). The similarities between the fused-ring systems of the four anhydro sugar molecules which have been studied
by crystal-structure determination are illustrated in Fig. 2.




III

The detailed conformation of the fused ring system in (Ia) can be described with reference to four planes.
(1) The plane through the carbon atoms of the furanose ring $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$, with $A=0.755$, $B=0.209, C=0.622, D=0.145 \AA$. The four carbon atoms are coplanar within the standard deviation of $0.004 \AA$. The furanose ring oxygen is $-0.676 \AA$ out of this plane, exo to the anhydro ring. The ring conformation is therefore an envelope with the oxygen out of the plane, i.e. $E_{0}$, rather than the twist or envelope with



II


IV

Fig. 2. Projections of 1,6-anhydro- $\beta$-D-mannofuranose (I), 1,6-anhydro- $\beta$-D-glucopyranose (II), 1,6:2,3-dianhydro- $\beta$-D-gulopyranose (III), and sedoheptulosan (IV), in a plane normal to the plane of the $\mathrm{C}, \mathrm{O}, \mathrm{C}$, atoms common to both rings. The numbers are distances from this common plane.
$\mathrm{C}(2)$ or $\mathrm{C}(3)$ out of the plane as commonly observed in nucleosides and oligosaccharides.
(2) The plane through $\mathrm{C}(1), \mathrm{O}(1), \mathrm{C}(4), \mathrm{C}(5)$ of the anhydro ring which is also exact within the standard


Fig. 3. Conformation angles around $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds in 1,6 -anhydro- $\beta$-D-mannofuranose.
deviations, with $A=0.505, B=0.833, C=-0.225, D=$ $1.544 \AA$. $\mathrm{O}(4)$ and $\mathrm{C}(6)$ are, respectively -0.815 and $0.505 \AA$ out of this plane, giving a chair-shaped dioxy six-membered ring.
(3) The plane through $\mathrm{O}(1), \mathrm{C}(6), \mathrm{C}(5)$ with $A=$ $-0.045, B=-0.740, C=0.671, D=-0.568 \AA$.
(4) The plane through $\mathrm{C}(2), \mathrm{C}(3), \mathrm{O}(2), \mathrm{O}(3)$ with $A=0.217, B=-0.566, C=0.796, D=-2.449 \AA$. This plane is not exact within the standard deviations, and the atoms are displaced $+0.017,-0.017,-0.010$, +0.010 , respectively.
The dihedral angles between these four planes are 1 to $2,114 \cdot 6^{\circ}, 2$ to $3,142 \cdot 2^{\circ}$, and 1 to $4,122 \cdot 7^{\circ}$.

The torsion angles about the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds are given in Fig. 3, and the bond lengths and valence angles are listed in Table 4. Four of the C-C bond lengths lie within a narrow range from 1.536 to $1.544 \AA$ and one, C(4)-C(5), is $0.040 \AA$ shorter than their mean. We have no explanation for this, but it is noteworthy that the bonding environment of this linkage is unique in the four anhydro sugars that have been studied, i.e.


The C-O bond lengths show a variation between $1 \cdot 409$ and $1.466 \AA$; i.e. of the same magnitude as is observed in the vicinity of the ring oxygen and anomeric carbon in most pyranose sugars ( $c f$. Berman, Chu \& Jeffrey, 1967). Such differences are to be anticipated in view of the relationships between the electronic distribution, conformational energies, and bond lengths of the -O-C-O- acetal bond sequence shown by the studies on 2-aldoxytetrahydropyrans (de Hoog, Buys, Altona \& Havinga, 1969), and by quantum-mechanical calculations (Radom, Hehre \& Pople, 1971), which have been extrapolated to the pyranose sugars by Jeffrey, Pople \& Radom (1972). In the anhydro sugars, the conformational angles about the $\mathrm{C}-\mathrm{O}$ bonds are con-

Table 4. Bond lengths and angles in 1,6-anhydro- $\beta$-D-mannofuranose The values in parentheses are the estimated standard deviations affecting the last decimal place.

| $i$ | $j$ | $D_{l j}$ | $i$ | $j$ | $k$ | $\angle i j k$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | C(2) | 1.538 (4) $\AA$ | C(1) | C (2) | C(3) | 103.5 (2) ${ }^{\circ}$ |
| C(2) | C(3) | 1.544 (4) | C(2) | C(3) | C(4) | $103 \cdot 6$ (2) |
| C(3) | C(4) | 1.536 (4) | C(3) | C(4) | C(5) | 114.5 (2) |
| C(4) | C(5) | 1.499 (4) | C(4) | C(5) | C(6) | $110 \cdot 8$ (3) |
| C(5) | C(6) | 1.537 (4) | C(1) | $\mathrm{C}(2)$ | $\mathrm{O}(2)$ | 115.4 (3) |
| C(1) | $\mathrm{O}(1)$ | 1.421 (4) | C(2) | C(1) | $\mathrm{O}(1)$ | 115.0 (3) |
| $\mathrm{C}(2)$ | $\mathrm{O}(2)$ | $1 \cdot 409$ (4) | C(2) | C(1) | $\mathrm{O}(4)$ | 102.7 (2) |
| C(3) | $\mathrm{O}(3)$ | $1 \cdot 419$ (4) | C(2) | C(3) | $\mathrm{O}(3)$ | 114.8 (2) |
| C(4) | $\mathrm{O}(4)$ | $1 \cdot 466$ (4) | C(3) | C(2) | O(2) | $111 \cdot 1$ (2) |
| C(1) | $\mathrm{O}(4)$ | $1 \cdot 421$ (4) | C(3) | C(4) | O(4) | 101.8 (2) |
| C(5) | $\mathrm{O}(5)$ | 1.436 (4) | C(4) | C(3) | $\mathrm{O}(3)$ | $110 \cdot 8$ (2) |
| C(6) | $\mathrm{O}(1)$ | $1 \cdot 430$ (4) | C(4) | C(5) | O (5) | $106 \cdot 7$ (2) |
| C(1) | H(1) | $1 \cdot 14$ (3) | C(5) | C(4) | $\mathrm{O}(4)$ | $106 \cdot 8$ (2) |
| C(2) | H(2) | 1.04 (3) | C(5) | C(6) | $\mathrm{O}(1)$ | 112.3 (3) |
| C(3) | H(3) | 1.08 (3) | C(6) | C(5) | O(5) | $111 \cdot 4$ (3) |
| C(4) | H(4) | 0.97 (3) | C(1) | $\mathrm{O}(4)$ | C(4) | $103 \cdot 3$ (2) |
| C(5) | H(5) | $0 \cdot 93$ (4) | C(6) | $\mathrm{O}(1)$ | C(1) | $114 \cdot 1$ (2) |
| C(6) | H(6A) | $0 \cdot 99$ (4) | O(1) | C(1) | O(4) | $109 \cdot 3$ (2) |
| C(6) | $\mathrm{H}(6 B)$ | 1.05 (4) | Mean values: |  |  |  |
| $\mathrm{O}(2)$ | $\mathrm{H}(\mathrm{O} 2)$ | 0.97 (4) | C-C | $1.539(8) \AA$, excluding C(4)-C(5)1.420 (13) |  |  |
| $\mathrm{O}(3)$ | $\mathrm{H}(\mathrm{O} 3)$ | $0 \cdot 83$ (4) | $\mathrm{C}-\mathrm{O}(\mathrm{H})$ |  |  |  |
| $\mathrm{O}(5)$ | $\mathrm{H}(\mathrm{O} 5)$ | $0 \cdot 81$ (4) | C-O |  |  |  |

Table 5. Comparison of bond lengths and torsion angles for $\mathrm{C}-\mathrm{O}$ bonds in some anhydro sugars

|  |  | Difference from mean C-O |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Mean } \\ & \mathrm{C}-\mathrm{O} \end{aligned}$ |  | $\stackrel{\theta}{\mathrm{C}-\mathrm{O}-\mathrm{C}-\stackrel{\varphi}{\mathrm{O}}-\mathrm{C}}$ |  |  | Torsion angles |  |
| I | 1,6-Anhydro- $\beta$-d-mannofuranose | 1.428 | +37 | -08 | -08 | +01 | -74 | $+60$ |
|  | (this work) |  |  |  |  |  |  |  |
| II | 1,6-Anhydro- $\beta$-D-gulcopyranose | 1.428 | +16 | -01 | -29 | +15 | +25 | -44 |
|  | (Park, Kim \& Jeffrey, 1970) |  |  |  |  |  |  |  |
| III* | 1,6:2,3-Dianhydro- $\beta$-d-gulopyranose | 1.426 | $+11$ | -14 | -21 | +06 | +34 | -46 |
|  | (Berking \& Seeman, 1971) |  | +04 | -23 | -17 | +13 | $+33$ | -46 |
| IV | Sedoheptulosan | 1.427 | +20 | 00 | -02 | +09 | +23 | -42 |

[^1]strained by the ring formation and systematic relations between torsion angles and bond lengths can be sought. Table 5 shows a comparison of the bond length and torsion angle data for the $\mathrm{C}-\mathrm{O}$ bonds of the $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond sequence in the four anhydro sugars which have been studied. In the mannofuranose derivative, this sequence is part of the chair-shaped six-membered ring with torsion angles close to $60^{\circ}$, whereas in the other three compounds, these bonds lie in the five-membered ring, which has characteristically smaller torsion angles. There is throughout the four compounds a systematic trend indicating a shortening of the inner bonds and a lengthening of the outer bonds. Although suggestive that a relationship may exist, the data are at present inadequate to establish an empirical connection with torsion angles. More precise measurements of bond lengths and some guidance from the theory is required at this stage.

The hydrogen bonding in the structure is shown in

Fig. 4. It is entirely intermolecular and consists of an infinite spiral extending in the $a$ axis direction, $\rightarrow \mathrm{O}(5 g) \mathrm{H} \rightarrow \mathrm{O}(2 a) \mathrm{H} \rightarrow \mathrm{O}(5 e) \mathrm{H} \rightarrow$ with two short branch chains $\mathrm{O}(2 a) \mathrm{H} \rightarrow \mathrm{O}(4 e)$ and $\mathrm{O}(5 g) \mathrm{H} \rightarrow \mathrm{O}(3 a) \mathrm{H}$ $\rightarrow \mathrm{O}(1 b)$. The hydroxyls $\mathrm{O}(2) \mathrm{H}$ and $\mathrm{O}(5) \mathrm{H}$ form bifurcated hydrogen bonds to $O(4), O(5)$ and $O(2), O(3)$ respectively, as defined by the geometry given in Table 6; $\mathrm{O}(3) \mathrm{H}$ forms a normal hydrogen bond to the anhydride ring oxygen $\mathrm{O}(1)$. The furanose ring oxygen $\mathrm{O}(4)$ accepts the bifurcated bond from $\mathrm{O}(2) \mathrm{H}$ and there is a close intramolecular approach of $2.775 \AA$ to $\mathrm{O}(5)$, but no intramolecular hydrogen bond, since the $\mathrm{O}(5)-\mathrm{H}$ bond points away from $\mathrm{O}(4)$ to form the bifurcated intermolecular hydrogen bonds with $O(2)$ and $\mathrm{O}(3)$. There is also a close approach of $2.649 \AA$ between the vicinal hydroxyls $O(2)$ and $O(3)$, but again the hydrogen bonding is intermolecular. Other nonbonding approaches less than $3 \cdot 3 \AA$ are given in Table 6.


Fig. 4. Clinographic representation of the unit cell of 1,6 -anhydro- $\beta$-D-mannofuranose.

Table 6. Hydrogen-bonding distances and angles

| $j$ | $D_{j k}$ | $D_{t k}$ | $\angle i j k$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}(2 a)-\mathrm{H}(\mathrm{O} 2 a)-\mathrm{O}(4 e)$ | 2.05 § | $2 \cdot 818$ A | $134{ }^{\circ}$ |
| -O(5e) | 2.29 | 3.140 | 146 |
| $\mathrm{O}(3 a)-\mathrm{H}(\mathrm{O} 3 a)-\mathrm{O}(1 b)$ | 2.04 | $2 \cdot 859$ | 169 |
| $\mathrm{O}(5 a)-\mathrm{H}(\mathrm{O} 5 a)-\mathrm{O}(2 f)$ | $2 \cdot 23$ | 2.934 | 145 |
| -O(3f) | 2.31 | 2.997 | 143 |

Non-bonded $\mathrm{O} \cdots \mathrm{O}$ distances less than $3 \cdot 3 \AA$

| $\mathrm{O}(1 a) \cdots \mathrm{O}(2 a)$ | $2.832 \AA$ |
| :--- | :--- |
| $\mathrm{O}(1 a) \cdots \mathrm{O}(4 a)$ | 2.318 |
| $\mathrm{O}(1 a) \cdots \mathrm{O}(5 a)$ | 3.095 |
| $\mathrm{O}(2 a) \cdots \mathrm{O}(3 a)$ | 2.650 |
| $\mathrm{O}(2 a) \cdots \mathrm{O}(5 g)$ | 2.934 |
| $\mathrm{O}(4 a) \cdots \mathrm{O}(5 a)$ | 2.776 |

Symmetry code

| $a$ | $x$ | $y$ | $z$ |
| :--- | ---: | ---: | ---: |
| $b$ | $-\frac{1}{2}-x$ | $1-y$ | $-\frac{1}{2}+z$ |
| $c$ | $-\frac{1}{2}-x$ | $1-y$ | $\frac{2}{2}+z$ |
| $d$ | $-1-x$ | $-\frac{1}{2}+y$ | $\frac{1}{2}-z$ |
| $e$ | $-1-x$ | $\frac{1}{2}+y$ | $\frac{1}{2}-z$ |
| $f$ | $-x$ | $-\frac{1}{2}+y$ | $\frac{1}{2}-z$ |
| $g$ | $-x$ | $\frac{1}{2}+y$ | $\frac{1}{2}-z$ |
| $h$ | $-\frac{1}{2}+x$ | $\frac{1}{2}-y$ | $1-z$ |
| $i$ | $\frac{1}{2}+x$ | $\frac{1}{2}-y$ | $1-z$ |

This research was supported in part by the U.S. Public Health Service, National Institutes of Health

Grant No. GM-11293, and in part by the National Science Foundation, University Science Development Grant No. GU-3184.

## References

Berking, B. \& Seeman, N. C. (1971). Acta Cryst. B27, 1752.

Berman, H. M., Chu, S. C. \& Jeffrey, G. A. (1967). Science, 157, 1576.
Brown, G. M. \& Thiessen, W. E. (1969). Acta Cryst. A25, S 195.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.

Heyns, K., Köll, P. \& Paulsen, H. (1971). Chem. Ber. 104, 830.
hoog, A. J. de, Buys, H. R., Altona, C. \& Havinga, E. (1969). Tetrahedron, 25, 3365.

Jeffrey, G. A., Pople, J. A. \& Radom, L. (1972). Carbohydr. Res. Submitted for publication.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Park, Y. J., Kim, H. S. \& Jeffrey, G. A. (1971). Acta Cryst. B27, 220.
Radom, L., Hehre, W. J. \& Pople, J. A. (1971). J. Amer. Chem. Soc. 93, 289.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Acta Cryst. (1972). B28, 3415

# The Crystal and Molecular Structure of 2,3-Diazanaphthalene 

By C. Huiszoon, B. W.van de Waal, A.B. van Egmond and S. Harkema<br>Chemical Physics Laboratory, Twente University of Technology, P.O. Box 217, Enschede, The Netherlands

(Received 20 April 1972)

The structure of 2,3-diazanaphthalene (phthalazine) has been determined by X-ray methods. Cell constants and intensity data were obtained with a single-crystal diffractometer. The space group is Pbca. Cell constants are $13 \cdot 695,10 \cdot 557$ and $9 \cdot 285 \AA$. There are eight nearly planar molecules in the unit cell.

## Introduction

In our laboratory research is carried out on the chemical and physical properties of diazanaphthalenes. Topics included so far are electron spin resonance (van den Ham, du Sart \& van der Meer, 1971) and photoelectron spectra (van den Ham \& van der Meer, 1972). In the course of these investigations the determination of the structures of the diazanaphthalenes seemed worth while. Moreover the crystal structure may be of interest from a lattice-dynamical point of view.
Of the anhydrous diazanaphthalenes, the crystal and molecular structure of 1,8-diazanaphthalene has been
determined by Clearfield, Sims \& Singh (1972). The structures of the dihydrates of 1,5 -diazanaphthalene (orthorhombic form) and 2,6-diazanaphthalene have been solved by Brufani, Duranti, Giacomello \& Zambonelli (1961) and by Brufani, Fedeli, Giacomello, Riccieri \& Vaciago (1966) respectively. In the present paper the crystal and molecular structure of 2,3-diazanaphthalene or phthalazine is described.

## Experimental

Small single crystals with linear dimensions of about 0.4 mm were grown by slow sublimation in vacuum


[^0]:    * On leave from Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, S. P., Brazil.
    $\dagger$ To whom all correspondence should be addressed.

[^1]:    * Two symmetry-independent molecules.

